Global anomalies in the Standard Model(s) and Beyond

Joe Davighi

DAMTP, Cambridge, UK

UZH, TPP Seminar, 5 October 2020

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

5 October 2020 1 / 60

< ロ > < 同 > < 三 > < 三 >

Outline of talk

Motivation

- **2** Global anomalies and bordism (via the η -invariant)
- O Global anomalies in the Standard Models + BSM
- Anomaly interplay in U(2) gauge theories

э

イロト イボト イヨト

Motivation

æ

イロト イヨト イヨト イヨト

Standard Model (SM) successfully explains all data from collider experiments.

4/60

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

But...

- Dark matter?
- Dark energy?
- Neutrino oscillations?
- Matter-antimatter asymmetry?
- ..
- Flavour puzzle?
- Hierarchy problems?
- Physics beyond Planck scale?
- ...

... Need to go Beyond the Standard Model (BSM)

3

The SM is also not unique.

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

The SM gauge group G is ambiguous:

- Gauge boson interactions only determine Lie algebra of G to be $\mathfrak{g} = \mathfrak{su}(3) \times \mathfrak{su}(2) \times \mathfrak{u}(1)$
- There are 4 groups with this Lie algebra that admit SM fermion representations:¹

$$G = \frac{SU(3) \times SU(2) \times U(1)}{\Gamma_n}, \qquad \Gamma_n \cong \mathbf{1}, \mathbb{Z}_2, \mathbb{Z}_3, \text{ or } \mathbb{Z}_6, \quad (1)$$

$$\Gamma_6 \text{ generated by } \omega = (e^{2\pi i/3} \mathbf{1}_3, -\mathbf{1}_2, e^{2\pi i/6});$$

 Γ_3 by ω^2 ; Γ_2 by ω^3 .

¹Assuming G is connected

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

글 > - - 글 > - -

$$G = \frac{SU(3) \times SU(2) \times U(1)}{\Gamma_n}, \quad \Gamma_n \cong \mathbf{1}, \ \mathbb{Z}_2, \ \mathbb{Z}_3, \text{ or } \mathbb{Z}_6$$
(2)

Could we tell the difference?

In theory - yes.²

- **1** Different periodicity of hypercharge θ angle
- Oifferent spectra of Wilson and 't Hooft line operators³
- **3** GUTs prefer the \mathbb{Z}_6 option

... with current experiments? No

³See Aharony, Seiberg, Tachikawa, 2013.

Joe Davighi (DAMTP, Cambridge, UK)

²Tong, 1705.01853

$$G = \frac{SU(3) \times SU(2) \times U(1)}{\Gamma_n}, \quad \Gamma_n \cong \mathbf{1}, \ \mathbb{Z}_2, \ \mathbb{Z}_3, \text{ or } \mathbb{Z}_6$$
(3)

Could we tell the difference?

In theory – yes.

- Different periodicity of hypercharge θ angle
- ② Different spectra of Wilson and 't Hooft line operators
- **3** GUTs prefer the \mathbb{Z}_6 option

... with current experiments?

No – unless LHC discovered new particles in representations that kill one of more of the options, e.g. $\phi \sim (1,2)_{\frac{\text{even number}}{6}}$ or $\psi \sim (1,1)_{\frac{\text{odd number}}{6}}$

9/60

イロト イボト イヨト イヨト 一日

$$G = \frac{SU(3) \times SU(2) \times U(1)}{\Gamma_n}, \quad \Gamma_n \cong \mathbf{1}, \ \mathbb{Z}_2, \ \mathbb{Z}_3, \text{ or } \mathbb{Z}_6, \tag{4}$$

Another possibility is that the four different SM gauge groups suffer from different anomalies.

- Perturbative anomalies automatically cancel for all four SMs
- ... but could be subtle global anomalies associated with topology of G. Perhaps not all four SMs are truly anomaly free?

3

Global anomalies in any of the 4 SMs?

Quick answer: No global anomalies in any of the SMs for the *specific* SM field content.⁴ Reasoning: no global anomalies in 4d SU(5) GUT

More refined answer: in any 4d G_{SM}/Γ_n gauge theory, there is at most[†] the Witten SU(2) anomaly.⁵ Cancelling this requires an even number of fermions with j = 2r + 1/2, $r \in \mathbb{Z}$. Result holds if extend SM by arbitrary BSM matter fields.

Also considered popular extensions of the SM gauge group, and find no new global anomalies.

[†]No Witten anomaly in the Γ_2 or Γ_6 case, where $G_{EW} = U(2)$, due to an interplay between local and global anomalies.⁶

⁴I. Garcia-Etxebarria and M. Montero, 2018, also D. Freed, 2007. ⁵JD, B. Gripaios, N. Lohitsiri, 1910.11277, also Z. Wan and J. Wang, 1910.14668. ⁶JD and N. Lohitsiri, 2001.07731.

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

Global anomalies, the η -invariant, and bordism

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

Image: A matching of the second se

5 October 2020 12 / 60

. ⊒ . ⊳

Ingredients for a chiral gauge theory

Let spacetime be a Euclidean 4-manifold $\boldsymbol{\Sigma}.$ We then need the following:

- **(**) An orientation on Σ (SM breaks *CP* and thus breaks time-reversal)
- 2 A form of spin structure on Σ to define fermions,
- S A principal G-bundle over Σ to define gauge fields. Equivalently, a map f : Σ → BG. 'B' means classifying space
- **(9** A Dirac operator $i \not D$ which couples fermions to gauge fields

Assume theory defined on **all** 4-manifolds admitting these structures.

SPORE (E)

Bordism

Bordism is an equivalence between (smooth, compact, closed) mfds with these structures. Two *d*-mfds are bordant if exists a d + 1-mfd X, with any 'structures' extended to X, such that

$$\partial X = Y_0 \sqcup (-Y_1),$$
 (5)

Bordism partitions spin *d*-mfds with maps to *BG* into equivalence classes, which form an (abelian) group $\Omega_d^{\text{Spin}}(BG)$ under disjoint union.

UZH, TPP Seminar

Bordism

E.g. the zero element in $\Omega_d^{\text{Spin}}(BG)$ therefore contains all *d*-mfds which are boundaries of d + 1-mfds, with spin structure & maps to *BG* extended.

We will need the concept of bordism shortly...

Fermionic partition functions

Anomalies can arise from the functional integration over fermions:

$$Z_{\psi}[A, \Sigma] \equiv \int \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-\int_{\Sigma} d^{4}x \ \bar{\psi} i \not{D}\psi} = \det i \not{D},^{7}$$
(6)

- Non-anomalous: Z_ψ[A, Σ] a C-function on space of background data (e.g. on space of connections modulo gauge transformations).
- Anomalous: Z_ψ[A, Σ] at best a section of a C-bundle over the space of background data

⁷More generally, det \rightarrow Pfaffian (if no conserved "chiral" charges) $\equiv 16/6$

Local anomaly:⁸

 $Z_{\psi}[A] \neq Z_{\psi}[A^g]$ for $A \to A^g$ with $g \approx \mathbf{1}$. Seen by 1-loop triangle diagrams

Global anomaly:⁹ any anomaly that is not local!

Example (Witten): 4d SU(2) gauge theory with one fermion doublet, $Z_{\psi}[A] = -Z_{\psi}[A^U]$, for U(x) in non-trivial class of $\pi_4(SU(2)) = \mathbb{Z}_2$

Global anomalies:

- Cannot be seen perturbatively (invisible in weak background fields)
- Not determined by Lie(G), but involve 'global' considerations
- Typically finite order anomalies

⁹E. Witten, 1982.

Joe Davighi (DAMTP, Cambridge, UK)

⁸S. L. Adler, 1969. J. S. Bell and R. Jackiw, 1969. ◆□▶ ◆母▶ ◆ ■▶ ◆ ■ → ● → ○ ○ 17/60

Global anomalies in general?

How can we systematically study global anomalies, if they can't be seen perturbatively? We need a better understanding of the object $Z_{\psi}[A, \Sigma] = \det i D$.

First observation:

$$Z_{\psi}[A, \Sigma] = \underbrace{|Z_{\psi}|}_{\text{anomaly free}} e^{i\theta}[A, \Sigma]$$
(7)

So the anomaly comes from the phase of the partition function. This phase can be understood using anomaly inflow.

Anomaly inflow: a simple example

4d U(1) gauge theory with a single Weyl fermion of unit charge. Under $\psi \to e^{i\alpha(x)}\psi$, $A \to A + d\alpha$,

$$Z_{\psi}
ightarrow \exp\left[-rac{i}{8\pi^2}\int_{\Sigma}lpha F\wedge F
ight]Z_{\psi}$$

Anomaly reproduced by coupling to a classical 5d Chern-Simons term,

$$S_{\rm CS} = \frac{1}{8\pi^2} \int_X A \wedge F \wedge F; \quad \delta_\alpha S_{\rm CS} = \frac{1}{8\pi^2} \int_X d\left(\alpha F \wedge F\right) = \frac{1}{8\pi^2} \int_{\Sigma} \alpha F \wedge F$$

Anomaly inflow: (general) perturbative version

Whenever $\Sigma = \partial X$, with spin structure & map to *BG* extending to 5-mfd *X*, can reproduce perturbative anomaly with a 5d Chern–Simons term:

$$\underbrace{Z_{\psi}[A, \Sigma]}_{\text{4d partition fn}} = |Z_{\psi}| \exp\left(-2\pi i \int_{X} I_{5}\right)$$
(8)

Locally, dI_5 is the gauge-invariant 'anomaly polynomial':

$$dI_5 = \Phi_6 = \hat{A}(R) \operatorname{tr} \exp\left(\frac{iF}{2\pi}\right)\Big|_6.$$
 (9)

Anomaly inflow: non-perturbative version

Non-perturbative generalisation, still for $\Sigma = \partial X$, is¹⁰

$$Z_{\psi}[A, \Sigma] = |Z_{\psi}| \exp\left(-2\pi i \eta_X\right), \qquad (10)$$

where η -invariant is regularised sum over eigenvalues λ_k of $i \not \! D_X$, e.g.

$$\eta_X = \lim_{\epsilon \to 0^+} \sum_k e^{-\epsilon |\lambda_k|} \operatorname{sign}(\lambda_k)/2, \tag{11}$$

 ¹⁰E. Witten & K. Yonekura, 2019. See also E. Witten, 2015 イミト イミト ミ つへへ 21/60

 Joe Davighi (DAMTP, Cambridge, UK)
 UZH, TPP Seminar
 5 October 2020
 21/60

 $Z_{\psi} = |Z_{\psi}| \exp(-2\pi i \eta_X)$ provides a suitable (smoothly-varying¹¹) object for systematically studying local and global anomalies.

¹¹X.-z. Dai and D. S. Freed, 1994

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

A D F A B F A

크 에 프 어

5 October 2020 22 / 60

Anomalies from locality

$$Z_{\psi}[A, \Sigma] = |Z_{\psi}| \exp\left(-2\pi i \eta_X\right)$$
(12)

A local 4d theory should be independent of the choice of 5d bulk X

$$\implies \exp\left(-2\pi i\eta_X'\right) = \exp\left(-2\pi i\eta_X\right) \tag{13}$$

Anomalies from locality

Use "gluing" property of η^{12}

$$\exp\left(-2\pi i\eta_X'\right) = \exp\left(-2\pi i\eta_X\right) \implies \left|\exp\left(-2\pi i\eta_{\bar{X}}\right) = 1\right| \qquad (14)$$

Must hold for any closed 5-mfd \bar{X} (that admits a spin structure and a map to BG). This condition will have very strong implications for anomalies

¹²X.-z. Dai and D. S. Freed, 1994

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

24/60

What is the connection to bordism?

æ

イロト イロト イヨト イヨト

Bordism and the η -invariant

Atiyah–Patodi–Singer (APS) index theorem for 6-mfd Y whose boundary $\bar{X} = \partial Y$ is a closed 5-mfd:¹³

$$\operatorname{Ind}(D_Y) = \int_Y \Phi_6 \underbrace{-\eta_{\bar{X}}}_{\text{'boundary correction'}} (APS)$$

<u>Local anomalies</u>: For $\bar{X} = \partial Y$, $(\eta_{\bar{X}} = \int_{Y} \Phi_{6} = \int_{\bar{X}} I_{5}) \mod \mathbb{Z}$; reduces to perturbative anomaly inflow formula (Chern–Simons)

<u>Cobordism invariance</u>: When $\Phi_6 = 0$, $\eta_{\bar{X}} \in \mathbb{Z} \implies \exp(2\pi i \eta_{\bar{X}}) = 1$ for all $\bar{X} = \partial Y$ in the trivial bordism class.

 $\implies \exp{(2\pi i \eta_{\bar{X}})}$ is a 5d (co)bordism invariant when $\Phi_6 = 0^{14}$

¹³M. F. Atiyah, V. K. Patodi, and I. M. Singer, 1975.

1⁴E. Witten, 1985. See also E. Witten, 2015. (ロトイクトイミトイミト ミークへぐ 26/60

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

A bordism criterion for global anomalies

Recall locality $\implies \exp(2\pi i \eta_{\bar{X}}) = 1$ on all closed 5-mfds:

- Considering mfds in trivial bordism class, already requires $\Phi_6 = 0$ (*i.e.* locality implies no perturbative anomalies)
- If Φ₆ = 0, may still be issues with locality on non-zero bordism classes. Would need to compute exp(2πiη_{X̄}) on suitable generators hard in practice!
- Solution Cheat: $\exp(2\pi i \eta_{\bar{X}}) = 1$ necessarily holds on all closed 5-mfds if¹⁵

$$\Omega_5^{\mathsf{Spin}}(BG) = 0 \tag{15}$$

Then (a) the theory is local, and (b) the phase $\exp(-2\pi i \eta_{\bar{X}})$ is trivial on any 'generalised mapping torus' \bar{X} , so no global anomalies.

This will be our (strong) criterion for there being no global anomaly.

not only if!		•	Þ	15	1	•	1
(DAMTP, Cambridge, UK)	UZH, TPP Seminar						

¹⁵but Joe Davighi

An important caveat

This whole analysis requires $\Sigma = \partial X$ for 5-mfd X with various structures extended.

But, generally, $\Omega_4^{\text{Spin}}(\cdot) \neq 0$, e.g. K3 surface.

Nonetheless, partition function can be consistently defined on all 4-mfds by assigning arbitrary theta angles to each generator of Ω_4 .¹⁶

Theory is well-defined, but ambiguous.

Q: What if spacetime itself has a boundary?

A: forget about it! (as far as I'm aware...)

A ID IN A (FID IN A)

∃ >

Global anomalies in the SM(s)

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

5 October 2020 30 / 60

30/60

æ

イロト イヨト イヨト イヨト

Q: How do we compute $\Omega_5^{\text{Spin}}(BG)$, say for $G = SU(3) \times SU(2) \times U(1)$?

æ

물 에서 물 에 다

Bordism groups can often be computed using standard methods in algebraic topology.

Our tool of choice is the Atiyah–Hirzebruch spectral sequence.¹⁷ We will here treat the AHSS as something of a black box, and only discuss what goes in, and what comes out.

¹⁷M. F. Atiyah and F. Hirzebruch, 1961.

Atiyah–Hirzebruch spectral sequence (AHSS)

- Spectral sequences are a kind of generalisation of exact sequences
- AHSS computes bordism groups of X where $F \rightarrow X \rightarrow B$
- $\bullet\,$ For trivial fibration pt $\to BG \to BG,^{18}$ inputs to the AHSS are

$$E_{p,q} := H_p(BG; \Omega_q^{\text{Spin}}(\text{pt})) = \underbrace{H_p(BG; \mathbb{Z})}_{\text{first input}} \otimes \underbrace{\Omega_q^{\text{Spin}}(\text{pt})}_{\text{second input}}$$
(16)

- **9** Build up homology from simpler spaces using $B(K \times H) = BK \times BH$ and Künneth theorem. E.g. $BU(1) = \mathbb{C}P^{\infty}$, $BSU(2) = \mathbb{H}P^{\infty}$.
- Spin-bordism groups of a point are known:¹⁹

$$\frac{n}{\Omega_n^{\text{Spin}}(\text{pt})} \begin{bmatrix} \mathbb{Z} & \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z}_2 & \mathbb{Z} & 0 & \mathbb{Z} & 0 & 0 & \mathbb{Z}^2 & \mathbb{Z}_2^2 & \mathbb{Z}_2^3 \end{bmatrix}$$
(17)

¹⁸For G_{SM}/Γ_6 used alternative fibration $\mathbb{Z}/3 \longrightarrow U(2) \times SU(3) \longrightarrow G_{SM}/\Gamma_6$ ¹⁹D. Anderson, E. Brown Jnr, F. P. Peterson, 1966.

Our results for the SMs

- First two columns only sensitive to spin structure
- Ω_d mostly boring in odd d ('opposite' situation to local anomalies)
- In all cases Ω_5 is 'at most' \mathbb{Z}_2 no new global anomalies beyond the Witten anomaly.²⁰

²⁰See also Z. Wan & J. Wang, 1910.14668, which confirmed these results (and filled in the gaps) using the Adams spectral sequence.

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

Results for global anomalies in BSM gauge theories

No global anomalies (beyond Witten SU(2) anomaly) in (multiple) Z' models, Pati-Salam unified theory, trinification models, or SM with a spin_c structure (e.g. by gauging B - L)

	$\Omega_d^{\text{Spin}}(BG)$					
G	0	1	2	3	4	5
$U(1)^m \times SU(2) \times SU(3)$	\mathbb{Z}	\mathbb{Z}_2	$\mathbb{Z}^m \times \mathbb{Z}_2$	0	$\mathbb{Z}^{3+\frac{1}{2}m(m+1)}$	\mathbb{Z}_2
$SU(4) \times SU(2)_L \times SU(2)_R$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}^4	\mathbb{Z}_2^2
$SU(3)_C \times SU(3)_L \times SU(3)_R$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}^4	0
$\frac{SU(3)_C \times SU(3)_L \times SU(3)_R}{\mathbb{Z}_3}$	\mathbb{Z}	\mathbb{Z}_2	$\mathbb{Z}_2\times\mathbb{Z}_3$	0	\mathbb{Z}^4 or $\mathbb{Z}^4 imes \mathbb{Z}_3$	0
SM with spin _c structure	\mathbb{Z}	0	×	0	×	0

Lesson for model-builders: Global anomalies seem to be rather rare in BSM²¹ – some reassurance for model builders!

Back to the SMs

	$\Omega_d^{\text{Spin}}(BG)$					
G	0	1	2	3	4	5
G _{SM}	\mathbb{Z}	\mathbb{Z}_2	$\mathbb{Z} imes \mathbb{Z}_2$	0	\mathbb{Z}^4	\mathbb{Z}_2
$G_{\rm SM}/\Gamma_2$	\mathbb{Z}	\mathbb{Z}_2	$\mathbb{Z}\times\mathbb{Z}_2$	0	\mathbb{Z}^4	0
$G_{\rm SM}/\Gamma_3$	\mathbb{Z}	\mathbb{Z}_2	$\mathbb{Z}\times\mathbb{Z}_2$	0	\mathbb{Z}^4	\mathbb{Z}_2
$G_{\rm SM}/\Gamma_6$	\mathbb{Z}	\mathbb{Z}_2	$e(\mathbb{Z}_3,\mathbb{Z} imes\mathbb{Z}_2)$	0	$e(\mathbb{Z}_3, e(\mathbb{Z}_3, \mathbb{Z}^4))$	0

In these two cases, there can be no global anomalies at all.

Physics Q: what happened to the Witten SU(2) anomaly?

36/60

イロト イポト イヨト イヨト

Anomaly Interplay in the SM

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

5 October 2020 37 / 60

æ

イロト イロト イヨト イヨト

First, let's review the Witten SU(2) anomaly again – but without mentioning $\pi_4(SU(2))...$

38/60

イロト イポト イヨト イヨト 一日

Recap: the SU(2) anomaly

For single isospin-j fermion coupled to SU(2) background F, Atiyah–Singer index theorem implies

$$\ln(i\not\!\!D) := n_{+} - n_{-} = -\frac{1}{8\pi^{2}} \int_{M} \operatorname{Tr} F \wedge F = T(j) \ p_{1}(F), \tag{18}$$

where $p_1(F) \in \mathbb{Z}$ is instanton number, $T(j) = \frac{2}{3}j(j+1)(2j+1)$ is Dynkin index. Hence # of fermion zero modes (for p_1 odd) is

$$\mathcal{N}_j := n_+ + n_- \equiv T(j) \pmod{2}. \tag{19}$$

If \mathcal{N}_j odd, Z[A] change signs under $(-1)^F$. But $(-1)^F$ equivalent to the gauge transformation $-\mathbf{1} \in SU(2)$, so SU(2) is anomalous.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで 39/60

Recap: the SU(2) anomaly

$$Z[A] \xrightarrow{-1 \in SU(2)} (-1)^{\mathcal{T}(j)} Z[A]$$

$$\tag{20}$$

 $T(j) = \frac{2}{3}j(j+1)(2j+1)$ odd iff isospin j = 2r + 1/2; only these isospins contribute to this mod 2 anomaly.

Anomaly cancels iff an even number of fermions with isospins 2r + 1/2.

40/60

Q: Why does $\Omega_5^{\text{Spin}}(BG_{\text{SM}}/\Gamma_{2,6}) \cong 0$? What has happened to the global SU(2) anomaly?

The SU(3) factor is here unimportant; can focus only on

$$SU(2) \times U(1) \qquad \text{vs.} \qquad (SU(2) \times U(1))/\Gamma_2 \cong U(2) \\ \Omega_5^{\text{Spin}}(B \cdot) = \mathbb{Z}_2 \qquad \qquad \Omega_5^{\text{Spin}}(B \cdot) = 0$$
(21)

A: the global anomaly SU(2) is traded for a local anomaly in U(2).²²

²²JD and N. Lohitsiri, 2001.07731

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

41/60

イロト 不得 トイヨト イヨト ニヨー

Can see this in 3 ways. First we need some U(2) rep theory:

U(2) irreps labelled by an irrep of SU(2) (isospin j) and a U(1) charge q, such that

$$q \equiv 2j \pmod{2},\tag{22}$$

= an 'isospin-charge relation'.

[In general, U(N) irreps labelled by an SU(N) irrep and a U(1) charge q satisfying

$$q = N$$
-ality (23)

of the SU(N) rep.]

3

→ < ∃ → </p>

の へ で 42/60

Method 1: the quick way

Mixed triangle anomaly is proportional to

$$\mathcal{A}_{\text{mix}} \equiv \sum_{j} T(j) \sum_{\alpha=1}^{N_{j}} q_{j,\alpha} = 0, \qquad (24)$$

T(j) is odd only for $j \in 2\mathbb{Z}_{\geq 0} + 1/2$, and $q \equiv 2j \pmod{2}$. Hence, reducing mod 2:

$$\sum_{j \in 2\mathbb{Z}+1/2} 1 \equiv 0 \pmod{2}, \tag{25}$$

so can be no Witten anomaly. But was this a coincidence?

43/60

듣▶ ★ 돋▶ -

Method 2: the physics way

In U(2),

$$(-1,1) \sim (1,e^{i\pi}) \in SU(2) \times U(1)$$
 (26)

So the SU(2) 'global gauge transformation' by $-\mathbf{1} \sim (-1)^F$ is actually a local U(1) gauge transformation in U(2).

Consider single U(2) fermion with isospin j and charge q. For U(1) g. t. by angle θ , non-invariance of fermion measure gives

$$Z[A] \to \exp\left[-\frac{iq\theta}{8\pi^2} \int_{S^4} \operatorname{Tr} F \wedge F + \text{gravitational piece}\right] Z[A]$$

= $\exp\left[-iq\theta \ T(j) \ p_1(F)\right] Z[A],$
 $\xrightarrow{\theta=\pi, \ p_1 \text{odd}} (-1)^{qT(j)} Z[A]$ (27)

Non-anomalous iff an even number of fermions with j = 2r + 1/2. But this is just a perturbative anomaly, not a global anomaly.

・ロト 4 回 ト 4 三 ト 4 三 ト 三 の 9 で 44/60

Method 3: the maths way

Because $\Omega_5^{\text{Spin}}(BU(2)) = 0$, can compute η -invariant directly, by using APS index theorem for any closed 5-mfd X:

$$\operatorname{ind}\left(i\not\!\!D\right) = \int_{Y} \Phi_{6} - \eta_{X}.$$
(28)

On $X = M \times S^1$ mapping torus with SU(2) 1-instanton through M, can extend U(2) bundle to $Y = M \times D^2$, and evaluate

$$\exp(2\pi i\eta_X) = \exp\left(2\pi i \int_{M \times D^2} \left[\frac{1}{24}p_1(\mathcal{R})\operatorname{Tr}\frac{\mathcal{F}}{2\pi} + \frac{1}{3!}\operatorname{Tr}\left(\frac{\mathcal{F}}{2\pi}\right)^3\right]\right) \quad (29)$$
$$= \cdots = (-1)^{qT(j)}$$

Unless "Witten condition" satisfied, partition function flips sign upon traversing mapping torus. A local anomaly because captured by Φ_6 .

A more subtle anomaly interplay

We found a more subtle anomaly interplay occurs in U(2) gauge theory defined without a spin-structure, involving both the 'old' and 'new'²³ SU(2) anomalies – see back-up slides if interested!

²³J. Wang, X-G. Wen, E. Witten, 2018.

46/60

Summary

- Non-perturbative anomaly inflow described by the η -invariant; possible global anomalies therefore detected by bordism groups
- We applied this criterion to the four SM gauge groups; found there is *at most* the *SU*(2) Witten anomaly (same for several BSM theories)
- In two cases, there are *no global anomalies whatsoever*, due to 'anomaly interplay'
- P.S. more subtle interplay in non-spin U(2) gauge theory

리아 이 크아 ----

Visual summary:

	Local anomalies	Global anomalies
Even dimensions	Chern–Simons in $d + 1$	Rare <i>e.g.</i> Witten <i>SU</i> (2)
Odd dimensions	Never!	Seemingly less rare

Thanks!

48/60

æ

イロト イヨト イヨト イヨト

Postscript: U(2) gauge theory without a spin structure

Joe Davighi (DAMTP, Cambridge, UK)

UZH, TPP Seminar

A ID IN A (FID IN A)

5 October 2020 49 / 60

49/60

3

- 4 ⊒ →

Recap: the 'new SU(2) anomaly'

Can define an SU(2) gauge theory without a spin structure (& \therefore on non-spin mfds e.g. $\mathbb{C}P^2$), by using a 'spin-SU(2) structure',

$$\mathsf{Spin}_{SU(2)}(4) \equiv \frac{\mathsf{Spin}(4) \times SU(2)}{\mathbb{Z}_2},\tag{30}$$

if all fermions (bosons) have half-integral (integral) isospin.

Choose a spin-SU(2) connection $A = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}$, for a spin_c connection *a* that obeys

$$\int_{\mathbb{C}P^1 \subset \mathbb{C}P^2} \frac{da}{2\pi} = \frac{1}{2}$$
(31)

◆□▶ ◆舂▶ ◆意▶ ◆意▶ 「意」のなで 50/60

Recap: the 'new SU(2) anomaly'

The anomaly occurs only on certain non-spin mfds – let's take $M = \mathbb{C}P^2$, complex coords z_i . The anomaly is in the combination of a diffeomorphism plus gauge transformation, e.g.

$$\hat{\varphi} = \begin{cases} \varphi : z_i \mapsto z_i^* & \text{diffeo.} \\ W = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in SU(2), & \text{g.t.} \end{cases}$$
(32)

which leaves the spin-SU(2) connection A invariant.

Atiyah–Singer implies # fermion ZMs is

$$\mathfrak{J}_j = \mathcal{N}_j = \frac{1}{24}(4j^2 - 1)(2j + 3),$$
 (33)

and they come in pairs with eigenvalues +1 and -1 under \hat{arphi} . Hence

$$Z[A] \xrightarrow{\hat{\varphi}} (-1)^{\hat{\mathfrak{I}}_{j}/2} Z[A].$$
(34)

◆□▶ ◆舂▶ ◆意▶ ◆意▶ 言 のへで 51/60

Recap: the 'new SU(2) anomaly'

$$Z[A] \xrightarrow{\varphi} (-1)^{\tilde{\mathfrak{I}}_{j}/2} Z[A],$$
(35)
$$\tilde{\mathfrak{I}}_{j} = \frac{1}{24} (4j^{2} - 1)(2j + 3).$$
(36)

 \mathfrak{J}_j even for all half-integer j, but congruent to 2 mod 4 only when j = 4r + 3/2; only these isospins contribute to the new (mod 2) anomaly.

Anomaly cancels iff an even number of fermions with isospins 4r + 3/2.

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q () -

Now embed $SU(2) \rightarrow U(2)$

Define fields with a spin-U(2) structure,

$$\operatorname{Spin}_{U(2)} \equiv \frac{\operatorname{Spin}(4) \times U(2)}{\mathbb{Z}/2},$$
(37)

イロト イポト イヨト イヨト 一日

which requires

$$\begin{array}{rcl} \text{fermion} & \longleftrightarrow j \in (2\mathbb{Z}+1)/2 & \longleftrightarrow q \text{ odd,} \\ \text{boson} & \longleftrightarrow & j \in \mathbb{Z} & \longleftrightarrow q \text{ even.} \end{array}$$
(38)

We consider a spin-U(2) connection of the same form, $A = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}$. As for SU(2) case, this theory can be put on any orientable 4-mfd.

Unlike the 'old' SU(2) anomaly, the anomalous transformation $\hat{\varphi}$ is **not** equivalent to a local gauge transformation in U(2).

But, at level of its action on Z[A], it is equivalent to a local g.t. by

$$\tilde{W} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \in U(2).$$
(39)

Under U(1) transformation by $e^{i\pi/2}$,

$$Z[A] \xrightarrow{\tilde{W}} Z[A] \exp\left[iS_{\text{gauge}} + \underbrace{iS_{\text{grav}}}_{\text{Non-vanishing on } \mathbb{C}P^2}\right], \quad (40)$$

$$S_{\text{gauge}} = -\frac{iq}{32\pi} \int_M \text{Tr } F_{\mu\nu} \tilde{F}^{\mu\nu} d^4 x = -iq\pi T(j) \underbrace{\frac{1}{2} \int_M \frac{f \wedge f}{(2\pi)^2}}_{\frac{1}{8}\sigma}, \quad (41)$$

$$S_{\text{grav}} = iq\pi \frac{(2j+1)}{24} \underbrace{\frac{1}{2} \int_M \frac{\text{Tr } R \wedge R}{(2\pi)^2}}_{3\sigma}. \quad (42)$$

On $\mathbb{C}P^2$, signature $\sigma = 1$.

э

イロト イポト イヨト イヨト

Hence

$$Z[A] \to Z[A] \exp\left[-\frac{i\pi}{8} \left(T(j) - \frac{1}{2}(2j+1)\right)q\right], \qquad (43)$$

thus

$$Z[A] \xrightarrow{\tilde{W}(\pi/2)} (-1)^{\tilde{\jmath}_j q/2} Z[A].$$
(44)

< ロト (母) (ヨ) (ヨ) (

Thus, we reproduce the condition for cancelling the new SU(2) anomaly from a local U(1) gauge transformation in U(2). More mundanely, implied by taking a particular linear combination of anomaly coefficients,

$$\frac{1}{4} \left[\mathcal{A}_{\mathsf{mix}} - \frac{1}{2} \mathcal{A}_{\mathsf{grav}} \right] = \sum_{j \text{ half integer}} \mathfrak{J}_j \sum_{\alpha} q_{j,\alpha} = 0 \pmod{4} \tag{45}$$

There is no possible 'new U(2) anomaly', but by a sort of 'coincidence'. This statement can be better understood using cobordism.

56/60

Cobordism and the 'new' U(2) anomaly

Firstly, for SU(2) with spin-SU(2) structure, both the 'old' and 'new' global anomalies captured by²⁴

$$\Omega_{5}^{\frac{\text{Spin} \times SU(2)}{\mathbb{Z}/2}} = \mathbb{Z}/2 \times \mathbb{Z}/2$$
(46)

Possible basis for *co*bordism given by $\mathcal{I}_{1/2}$ and $\mathcal{I}_{3/2}$, the 5d mod 2 indices for single fermion with isospin-1/2 or 3/2.

²⁴J. Wang, X-G. Wen, E. Witten, 2018.

Cobordism and the 'new' U(2) anomaly

For U(2) with spin-U(2) structure, we calculate using the Adams sequence that

$$\Omega_5^{\frac{\text{Spin} \times U(2)}{\mathbb{Z}/2}} = \mathbb{Z}/2 \tag{47}$$

No 'old' U(2) anomaly corresponding to $\mathcal{I}_{1/2}$. But the 'new' anomaly 'still there', detected by

$$\int_X w_2 w_3, \tag{48}$$

< ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which is actually a cobordism invariant independent of the U(2)-structure.

Disentangling the anomaly interplay

In what sense is the new U(2) global anomaly 'still there' physically, beyond the result of the bordism calculation?

A low-energy theory with this anomaly can be revealed by cancelling the perturbative anomalies using Wess–Zumino terms,

$$\mathcal{L} \to \mathcal{L} + \frac{i\mathcal{A}_{\text{mix}}}{32\pi^2} \phi F^{a}_{\mu\nu} \tilde{F}^{a\mu\nu} + \frac{i\mathcal{A}_{\text{grav}}}{384\pi^2} \phi \sqrt{g} R_{\mu\nu\sigma\tau} \tilde{R}^{\mu\nu\sigma\tau}, \qquad (49)$$

albeit at the expense of spontaneously breaking U(2)
ightarrow SU(2)...

The new (S)U(2) anomaly that remains can then be cancelled by coupling to a TQFT.²⁵

²⁵Kapustin, 2014. Thorngren, 2014.

ミト ▲ ミト 三 - - のへ(?)

We could summarize this story as follows:

It is possible to write down a consistent U(2) theory of a single isospin-3/2 fermion, that can be defined on non-spin manifolds using a spin-U(2) structure, if one includes a pair of WZ terms to cancel the perturbative anomalies, and couples to a tQFT to cancel the residual global anomaly.

< ロト (母) (ヨ) (ヨ) (