

Title

Master Thesis in Physics

Author

Supervised by Prof. Dr. Name Ph.D. Name

January 3, 2023

Abstract

XXX

Acknowledgements

XXX

Contents

Ι	Introduction	1
2	Motivation	1
3	Theory	3
4	Theory	3
II	Mainpartname	3
5	Sectionname 5.1 Subsection	3 3
III	Mainpartname two	3
6	Sectionname 6.1 Subsection	3 3
IV	Conclusions & Outlook	6
\mathbf{V}	Appendix	7

List of Figures

1	Short Caption Figure 1									•												•	•								4
2	Short Caption Figure 2		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	5

List of Tables

1	Short Caption Table 1	3
2	Short Caption Table 2	4

Part I Introduction

2 Motivation

continuation of motivation if longer than one page

3 Theory

4 Theory

Part II Mainpartname

5 Sectionname

In section 6...

5.1 Subsection

5.1.1 Subsubsection

Part III Mainpartname two

6 Sectionname

In section 6...

6.1 Subsection

6.1.1 Subsubsection

Some examples

$$M_Z = (57.9 \pm 7.03) M_{\oplus} (\frac{M}{M_J})^{(0.61 \pm 0.08)}$$
(1)

n	0	1	1.5	2	2.5
$ au_{ff}$	$\propto M^0$	$\propto M^{1/4}$	$\propto M^{1/2}$	$\propto M$	$\propto M^{5/2}$
$ au_{expl}$	$\propto M^0$	$\propto M^{1/4}$	$\propto M^{1/2}$	$\propto M$	$\propto M^{5/2}$
τ_{Alfven}	$\propto M^{1/3}$	$\propto M^{1/4}$	$\propto M^{1/6}$	$\propto M^0$	$\propto M^{-1/2}$
$ au_{shear}$	$\propto M^{-1/3}$	$\propto M^0$	$\propto M^{1/3}$	$\propto M$	$\propto M^3$

Table 1: Relation of the timescales with planetary mass for different density power-law indexes.

Figure 1: Relation of the 13 MHD clumps bound mass with (a) the free-fall timescale, (b) the expansion timescale, (c) the Alfvén timescale, and (d) the shear timescale. The black dashed and dotted lines correspond to the predicted relation for power-law index n=1.5 and n=2.

Mass	$0.01 M_{Jupiter}$	$0.1 M_{Jupiter}$	$1M_{Jupiter}$	$10M_{Jupiter}$
	$le [10^3 yrs]$			
Z=0.007	500'000	5'000	50	0.5
Z=0.013	900'000	9'000	90	0.9
Z=0.02	1'300'000	13'000	130	1.3
Z=0.1	4'300'000	43'000	430	4.3
Z=0.2	4'800'000	48'000	480	4.8
Z=0.5	1'100'000	11'000	110	1.1
Z=0.7	130'000	1'300	13	0.1
Z=0.9	660	6.6	0.07	0.001

Table 2: Vaporization timescales of a micron-sized silicate grain in scenario 1.

Footnote¹ Figure 2 shows...

 ^{1}XXX

Figure 2: Mass to semimajor axis relation of confirmed planets, detected by ground-spaced transit, RV survey, Kepler survey, ground and space microlensing, and direct imaging. The solid lines in different colors mark the sensitivity regions of each detection method. The figure is reprinted from Zhu & Dong (2021) [1].

Part IV Conclusions & Outlook

Conclusions

Outlook

Part V Appendix

References

[1] W. Zhu and S. Dong, "Exoplanet statistics and theoretical implications," Annual Review of Astronomy and Astrophysics, vol. 59, no. 1, pp. 291–336, 2021.