

Diskussion der ErgebnisseAuswertung der Eventanalyse

Daniel Meister

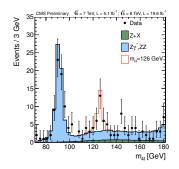
03/28/2014

Ablauf

- Statistik-Grundlagen
- Resultate

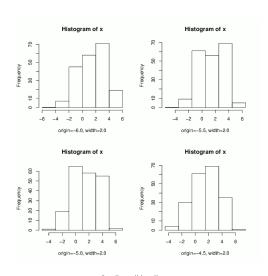
e / μ Verhältnis W^+ / W^- Verhältnis W / Z Verhältnis Die Z-Masse m_Z

- **3** Video-Konferenz
- 4 Fragen



Statistik-Grundlagen

Histogramm

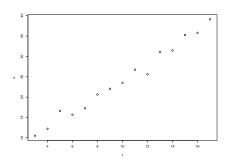


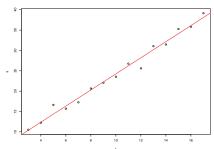
- Messwerte sind "zu genau"
 - → nie zweimal genau das gleiche Resultat
- Wir müssen Bereiche definieren
 - ightarrow sollten in etwa der Auflösung des Detektors entsprechen
 - ightarrow falsche Wahl der Breite/Grenzen kann Resultate "verfälschen"

Histogramm

Quelle: wikipedia.org

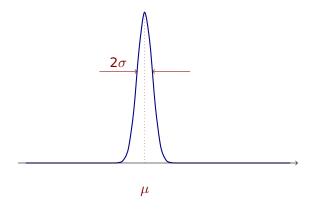
Fitting


- Vorhanden sind
 - einige Messpunkte
 - eine Theorie über den Zusammenhang
- Gesucht sind
 - Parameter f
 ür den theoretischen Zusammenhang
 - ightarrow so dass es am besten zu den Daten passt


Fitting

Beispiel

Messpunkte der Position eines Velofahrers


$$s(t) = (1.97 \pm 0.07) \cdot t + (4.5 \pm 0.8)$$

Gauss-Funktion

Für die Masse fitten wir eine Gauss Funktion

→ gute Beschreibung der Energie-Unschärfe (Heisenberg)

• Beschrieben durch Mittelwert μ und Breite σ

Fehler

Statistische Fehler

- ightarrow wenn 9 von 100 ausgewerteten Events $Z
 ightarrow e^+e^-$ sind, ist der Durchschnitt nicht sicher 9%
- ightarrow je mehr Events wir auswerten desto kleiner wird der Fehler

Systematische Fehler

- ightarrow wenn man z.B. mit einem falschen Massstab misst, bleibt der Fehler immer gleich
- ightarrow oder wenn der Computerbildschirm nicht ganz flach ist und man die falsche Ladung "abliest"
- → schwieriger zu reduzieren als der statistische Fehler

Resultate

e / μ Verhältnis

e / μ Verhältnis

- Lepton-Universalität
 - \rightarrow keine Unterschiede zwischen (gleich geladenen) Leptonen ausser der Masse
- Erwarteter Wert (für W- und Z-Zerfälle kombiniert)

$$rac{\mathsf{e}}{\mu} = \mathsf{1}$$

e / μ Verhältnis

- Lepton-Universalität
 - \rightarrow keine Unterschiede zwischen (gleich geladenen) Leptonen ausser der Masse
- Erwarteter Wert (für W- und Z-Zerfälle kombiniert)

$$\frac{\mathsf{e}}{\mu} = \mathbf{1}$$

Unsere Messung

$$rac{oldsymbol{e}}{\mu}= extbf{1.00}\pm extbf{0.09}$$

W⁺ / W⁻ Verhältnis

W⁺ / W⁻ Verhältnis

- Wir kollidieren Protonen
 - \rightarrow mehr u quarks, d.h. wir produzieren mehr W^+
- Erwarteter Wert (W Charge Assymmetry)

$$R_{+/-} = \frac{W^+}{W^-} = 1.43 \pm 0.04$$

W⁺ / W⁻ Verhältnis

- Wir kollidieren Protonen
 - \rightarrow mehr u quarks, d.h. wir produzieren mehr W^+
- Erwarteter Wert (W Charge Assymmetry)

$$R_{+/-} = \frac{W^+}{W^-} = 1.43 \pm 0.04$$

Unsere Messung

$$R_{+/-} = \frac{W^+}{W^-} = 1.54 \pm 0.20$$

W / Z Verhältnis

W / Z Verhältnis

- Produktions- und Zerfallsrate werden berücksichtigt
- Erwarteter Wert

$$R_{W/Z} = \frac{W}{Z} = 10.74 \pm 0.04$$

W / Z Verhältnis

- Produktions- und Zerfallsrate werden berücksichtigt
- Erwarteter Wert

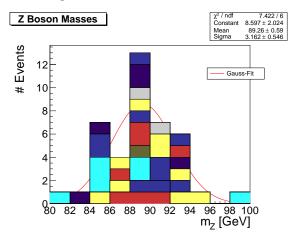
$$R_{W/Z} = \frac{W}{Z} = 10.74 \pm 0.04$$

Unsere Messung

$$R_{W/Z} = \frac{W}{Z} = 2.16 \pm 0.23$$

Die Z-Masse mz

Die Z-Masse mz


- Freier Parameter des Standard Modells
 - \rightarrow wurde von verschiedenen Experimenten sehr genau gemessen
- Erwarteter Wert (PDG)

$$m_Z = 91.1876 \pm 0.0021$$

Die Z-Masse mz

Unsere Messung

 $m_Z = 89.26 \pm 0.59 \, \text{GeV}$

Video-Konferenz

Video-Konferenz

- Austausch mit anderen Gruppen
- Mitteilung unserer Resultate
 - Messwert, Unsicherheiten
 - Probleme
 - Fragen
- Offene Diskussion

•

Diskussion